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Alg. Short name Descriptive name Reference Year Comments

1 HARD-DE Hierarchical archive-based DE Meng and Pan 2019 2019
Population size is parabolically (quicker at the end of the search) decreased during run from 25ln(D)D0.5 to 4. Algorithm performed
best on calibration of other hydrological problem – air2water model calibration (Zhu et al. 2021).

2 MDE_pBX
Memetic adaptive DE with new mutation and

crossover
Islam et al. 2012 2012 Population size = 100. One among older classical adaptive DE variants.

3 L-SHADE SHADE with linear population size reduction
Tanabe and Fukunaga 

2014
2014

A version of Successful History Adaptive DE with population size linearly reduced during run from 18D at the beginning to 4 at the
end. State-of-the-art algorithm that was a kick-off point for many other Differential Evolution variants.

4
OLSHADE-

CS
DE orthogonal array‐based initialization and new
selection strategy

Kumar et al. 2022 2022
Algorithm proposes a new DE selection technique and a new initialization method. The population size is decreasing linearly from
6D2 to 4 during the search.

5 EnsDE Ensemble of DE algorithms Wu et al. 2018 2018 Population size = 100. State-of-the-art ensemble of DE variants.

6 DEPSO Dual environmental PSO Zhang et al 2019 2019 Population size = 50. Velocities are initialized randomly within [MINi,MAXi] interval.

7 EPSO Ensemble of PSO variants
Lynn and Sugan-than 

2017
2017

Population size = 40, divided into two uneven swarms. Population size = 50. Velocities are initialized randomly within [MINi,MAXi]
interval. Classical algorithm that manages an ensemble of different PSO variants.

8 PPSO Pyramid PSO Li et al 2022 2022
Population size = 64. An algorithm builds a 4-layer pyramid with number of particles from the top to the bottom layer set to 4, 8, 20,
32. Some particles in each layer may communicate solely with particles from the same layer, others may communicate with particles
from the same layer and from the one upper layer. Velocities are initialized with ±0.1ˑ[MINi-MAXi].

9 PSO-sono PSO for single-objective problems Meng et al. 2022 2022
Population size = 100. A very recent PSO variant that uses a ring topology. Velocities are initialized randomly within [-30,30]
interval.

10 TAPSO Triple-archive PSO Xia et al. 2020 2020
Population size = 60. Velocities are initialized randomly within [MINi,MAXi] interval, but during run are effectively restricted to
±0.2ˑ[MINi-MAXi].
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Calibration set
Mean 14.154 14.504 14.666 20.242 14.624 15.200 14.647 14.088 15.727 15.041

Rank mean 2 3 6 10 4 8 5 1 9 7
Median 14.505 14.505 14.505 20.365 14.603 14.926 14.629 14.039 16.066 15.065
Rank 

median
2 2 2 10 5 7 6 1 9 8

Best 12.158 14.487 14.487 18.389 14.505 14.506 14.303 13.042 14.572 13.270
Rank best 1 5 5 10 7 8 4 2 9 3

Worst 14.505 14.585 16.294 22.327 14.892 16.295 14.983 16.161 16.349 16.008
Rank worst 1 2 7 10 3 8 4 6 9 5
Standard 

deviation
0.811 0.017 0.481 0.939 0.086 0.608 0.163 0.988 0.710 0.607

Validation set
Mean 39.314 40.365 40.450 46.087 42.072 38.832 40.600 37.196 40.339 39.410

Rank mean 3 6 7 10 9 2 8 1 5 4
Median 40.026 40.027 40.025 44.484 41.886 39.367 39.937 37.118 39.974 39.349
Rank 

median
7 8 6 10 9 3 4 1 5 2

Best 32.350 39.964 39.354 36.918 37.665 37.076 38.811 35.099 38.859 37.291
Rank best 1 10 9 3 6 4 7 2 8 5

Worst 41.718 41.738 43.285 60.342 45.759 41.264 45.108 40.014 43.525 43.710
Rank worst 3 4 5 10 9 2 8 1 6 7
Standard 

deviation
2.644 0.677 0.886 5.908 1.545 1.197 1.578 1.329 1.256 1.315
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Calibration set
Mean 15.819 16.127 16.091 19.909 15.824 16.946 15.979 16.567 16.661 16.567

Rank mean 1 5 4 10 2 9 3 6 8 6
Median 15.719 15.719 15.719 19.871 15.719 15.828 15.737 15.828 15.815 15.828
Rank 

median
1 1 1 10 1 7 5 7 6 7

Best 15.719 15.719 15.719 17.030 15.719 15.719 15.719 15.719 15.719 15.719
Rank best 1 1 1 10 1 1 1 1 1 1

Worst 18.819 18.821 18.821 21.529 18.819 18.868 18.823 18.874 18.863 18.874
Rank worst 1 3 3 10 1 7 5 8 6 8
Standard 

deviation
0.557 1.054 0.932 1.344 0.556 1.521 0.764 1.356 1.423 1.356

Validation set
Mean 30.279 30.279 31.296 38.513 30.240 35.873 30.837 33.913 34.104 33.913

Rank mean 2 2 5 10 1 9 4 6 8 6
Median 29.759 29.759 29.759 35.996 29.757 30.275 29.759 30.221 29.759 30.221
Rank 

median
2 2 2 10 1 9 2 7 2 7

Best 29.759 29.759 29.749 28.874 29.049 28.840 29.079 28.840 28.816 28.840
Rank best 8 8 8 5 6 2 7 2 1 2

Worst 45.870 45.870 45.816 46.794 45.816 45.518 45.535 45.518 45.871 45.518
Rank worst 7 7 5 10 5 1 4 2 9 2
Standard 

deviation
2.894 2.894 4.765 5.992 2.894 7.753 3.939 6.937 7.372 6.937

Introduction
The performance of conceptual catchment runoff models may highly depend on specific methodological choices made by the user. In this paper we show 
how the performance of two different models, HBV [1] and GR4J [2], is affected by the choice of the optimizer, the method of Average Areal Rainfall 
estimation and computational period.

Conceptual catchment runoff models
This paper considers two lumped conceptual models, that are built of interconnected reservoirs with mathematical transfer functions used to describe the 
transfer of water between reservoirs and into the river. The input variables to both models are daily precipitation totals, mean air temperature  and 
estimated potential evapotranspiration. Precipitation may occur in the form of rainfall, snowfall or a mixture of snowfall and rainfall.

HBV model
The HBV model, introduced by Bergström [2], is a standard tool for runoff simulations and flood forecasting. Details of the version adopted in this paper 
can be found in [3]. The model has five state variables representing storage of snow pack, snowmelt water, soil moisture, fast runoff and base flow. The 
model requires calibration of 13 parameters.

GR4J model
The detailed mathematical description of the GR4J model may be found in [4]. Since our study is concerned with Polish climatic conditions, the original 
model is extended by adding a snow module similar to that used in HBV model. This extended version of GR4J has seven parameters, namely three 
parameters in the snow routine and four original parameters representing maximum capacity of production store, groundwater exchange coefficient, one-
day-ahead maximum capacity of routing store and time base of unit hydrograph. However, we believe that the introduction of the name GR7J may be 
confusing.

Average Areal Precipitation estimation
Areal precipitation estimation is to be determined in three ways: Thiessen Polygon approach, joint optimization of conceptual rainfall-runoff model 
parameters, and E-OBS gridded dataset. 

The choice of the optimizer
This paper focus on direct comparison between two families of optimization algorithms: Particle Swarm Optimization and Differential Evolution, for 
conceptual rainfall-runoff model calibration. After quarter century of research, one could find hundreds of DE and PSO variants in the literature ([5], [6]) . 
Various variants of DE and PSO may highly differ from, and are often much more complicated than the basic versions of these algorithms. In this study 
we point at mod-ern DE and PSO variants, instead of their historical, simple versions. Five relatively recently proposed DE variants, and five PSO variants 
were selected for calibration of HBV and GR4J models. All tested variants were proposed in the main computer science journals or proceedings from the 
leading conferences in Evolutionary Computation.

Kamienna catchment.
Tests are based on the Kamienna catchment located in the central Poland that have relatively complicated orography, and is composed of lowland and 
low-mountainous part (A = 2007,9 km², L= 138 km, Qavr = 10 m3/s).

Table 1. Compared variants of Differential Evolution and Particle Swarm Optimization algorithms. In comments, D means problem dimensionality, [MINi, MAXi] are bounds set for i-th dimension. Algorithms 1-5 are Differential Evolution-
based, 6-10 are Particle Swarm Optimization-based

Table 2. MSE results obtained for HBV model Table 3. MSE results obtained for GR4J model

Conclusions
We have compared five DE and five PSO algorithms on calibration of HBV and GR4J conceptual models for rainfall-runoff modelling of the Kamienna catchment. We aimed at finding whether DE or PSO algorithms would be better 
suited for that task. Each algorithm was run 30 times to obtained a sample of results. 

It turned out that the results obtained by different optimizers are roughly similar for GR4J model that has a few parameters. For GR4J model one may point at an inferior algorithm – OLSHADE-CS, rather than a winners, as many 
optimizers performed very similarly.

In the case of HBV model the results were much different. OLSHADE-CS also performed by far the poorest, but results obtained by other algorithms were diversified. Which method could be termed a winner depends whether one focus 
on calibration, or validation set, and whether one is interested in mean/ median performance, or in finding the best possible solution in one among 30 runs. 

Overall two algorithms, PPSO and HARD-DE, performed best on HBV model calibration, and DE algorithms slightly outperformed PSO ones.
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